Detection, isolation, and characterization of acidophilic methanotrophs from Sphagnum mosses.

نویسندگان

  • Nardy Kip
  • Wenjing Ouyang
  • Julia van Winden
  • Ashna Raghoebarsing
  • Laura van Niftrik
  • Arjan Pol
  • Yao Pan
  • Levente Bodrossy
  • Elly G van Donselaar
  • Gert-Jan Reichart
  • Mike S M Jetten
  • Jaap S Sinninghe Damsté
  • Huub J M Op den Camp
چکیده

Sphagnum peatlands are important ecosystems in the methane cycle. Methane-oxidizing bacteria in these ecosystems serve as a methane filter and limit methane emissions. Yet little is known about the diversity and identity of the methanotrophs present in and on Sphagnum mosses of peatlands, and only a few isolates are known. The methanotrophic community in Sphagnum mosses, originating from a Dutch peat bog, was investigated using a pmoA microarray. A high biodiversity of both gamma- and alphaproteobacterial methanotrophs was found. With Sphagnum mosses as the inoculum, alpha- and gammaproteobacterial acidophilic methanotrophs were isolated using established and newly designed media. The 16S rRNA, pmoA, pxmA, and mmoX gene sequences showed that the alphaproteobacterial isolates belonged to the Methylocystis and Methylosinus genera. The Methylosinus species isolated are the first acid-tolerant members of this genus. Of the acidophilic gammaproteobacterial strains isolated, strain M5 was affiliated with the Methylomonas genus, and the other strain, M200, may represent a novel genus, most closely related to the genera Methylosoma and Methylovulum. So far, no acidophilic or acid-tolerant methanotrophs in the Gammaproteobacteria class are known. All strains showed the typical features of either type I or II methanotrophs and are, to the best of our knowledge, the first isolated (acidophilic or acid-tolerant) methanotrophs from Sphagnum mosses.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Insights into functional bacterial diversity and its effects on Alpine bog ecosystem functioning.

Plant-associated bacteria are important for the growth and health of their host, but little is known about its functional diversity and impact on ecosystem functioning. We studied bacterial nitrogen fixation and methane oxidation from indicator Sphagnum mosses in Alpine bogs to test a hypothesis that the plant microbiome contained different functional patterns depending on their functions withi...

متن کامل

High Throughput Sequencing to Detect Differences in Methanotrophic Methylococcaceae and Methylocystaceae in Surface Peat, Forest Soil, and Sphagnum Moss in Cranesville Swamp Preserve, West Virginia, USA

Northern temperate forest soils and Sphagnum-dominated peatlands are a major source and sink of methane. In these ecosystems, methane is mainly oxidized by aerobic methanotrophic bacteria, which are typically found in aerated forest soils, surface peat, and Sphagnum moss. We contrasted methanotrophic bacterial diversity and abundances from the (i) organic horizon of forest soil; (ii) surface pe...

متن کامل

Microbial CH4 and N2O Consumption in Acidic Wetlands

Acidic wetlands are global sources of the atmospheric greenhouse gases methane (CH(4)), and nitrous oxide (N(2)O). Consumption of both atmospheric gases has been observed in various acidic wetlands, but information on the microbial mechanisms underlying these phenomena is scarce. A substantial amount of CH(4) is consumed in sub soil by aerobic methanotrophs at anoxic-oxic interfaces (e.g., tiss...

متن کامل

A Proposed Biochemical Protocol to Isolate and Characterize Acidophilic Bacteria from Tailings Soil

Indigenous acidophilic bacteria separated from mine-waste can be used in return for the addition of the reagents like sulfuric acid. Among the tailings bacteria, Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans are of the most-studied ones for the bioleaching and bioremediation of elements. In this work, the isolation and characterization of the mentioned bacteria are studied by...

متن کامل

Temperature-Induced Increase in Methane Release from Peat Bogs: A Mesocosm Experiment

Peat bogs are primarily situated at mid to high latitudes and future climatic change projections indicate that these areas may become increasingly wetter and warmer. Methane emissions from peat bogs are reduced by symbiotic methane oxidizing bacteria (methanotrophs). Higher temperatures and increasing water levels will enhance methane production, but also methane oxidation. To unravel the tempe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 77 16  شماره 

صفحات  -

تاریخ انتشار 2011